Journal of Organometallic Chemistry, 209 (1981) C60-C64 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

**Preliminary communication** 

## BASIC METALS

## XXXIV\*. SYNTHESIS AND REACTIVITY OF $RuH(\eta^2 - CH_2PMe_2)(PMe_3)_3$

H. WERNER\* and R. WERNER

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

(Received January 14th, 1981)

## Summary

The complex  $\operatorname{RuH}(\eta^2 - \operatorname{CH}_2 \operatorname{PMe}_2)(\operatorname{PMe}_3)_3$  is obtained by reduction of *trans*-RuCl<sub>2</sub> (PMe<sub>3</sub>)<sub>4</sub> with Na/Hg in benzene. In contrast to the iron analogue, this complex is configurationally stable on the NMR time scale and does not react with CO or P(OMe)<sub>3</sub> under normal conditions, but it does react with the electrophiles MeI, CS<sub>2</sub> and NH<sub>4</sub>PF<sub>6</sub> to form RuI( $\eta^2$ -CH<sub>2</sub> PMe<sub>2</sub>)(PMe<sub>3</sub>)<sub>3</sub>, Ru( $\eta^3$ -S<sub>2</sub> CHPMe<sub>2</sub> CH<sub>2</sub>)(PMe<sub>3</sub>)<sub>3</sub> and [RuH(PMe<sub>3</sub>)<sub>5</sub>]PF<sub>6</sub>, respectively.

The formation of the hydrido(phenyl)osmium complex cis-OsH(C<sub>6</sub>H<sub>5</sub>)-(PMe<sub>3</sub>)<sub>4</sub> (II) by reaction of the benzeneosmium complex C<sub>6</sub>H<sub>6</sub>Os(PMe<sub>3</sub>)C<sub>2</sub>H<sub>4</sub> (I) [2] with an excess of PMe<sub>3</sub> represents an unusual example of an intramolecular insertion of a transition metal into an  $sp^2$ -C—H bond [3].



To find out whether a reaction of this type represents a general method of forming aryl(hydrido)metal complexes we have now studied the reactivity of

\*For Part XXXIII see ref. 1.

0022-328X/81/0000-0000/\$ 02.50, © 1981, Elsevier Sequoia S.A.

 $C_6 H_6 Ru(PMe_3)C_2 H_4$  [4], the ruthenium analogue of I, towards trimethyl-phosphine.

Although the Lewis-base properties of I and  $C_6 H_6 Ru(PMe_3) C_2 H_4$  (III) are very similar, the reactions of I and III with PMe<sub>3</sub> are completely different. Complex III reacts with PMe<sub>3</sub> by elimination of benzene rather than of ethylene to yield a rather labile compound, the spectroscopic data of which correspond to the composition  $Ru(PMe_3)_4 C_2 H_4$  (<sup>1</sup>H NMR ( $C_6 D_6$ ):  $\delta = 1.47$  vt, J' = 4.4Hz and 1.19 vt, J' = 4.6 Hz (both signals corresponding to four PMe<sub>3</sub> groups); 0.95 m ( $C_2H_4$ )\*. This finding led us to seek other routes to the aryl(hydrido) complex  $RuH(C_6 H_5)(PMe_3)_4$ .

It is known from Chatt's work on low-valent transition metal complexes containing chelating diphosphines as ligands that the reduction of *trans*-RuCl<sub>2</sub>-(dmpe)<sub>2</sub> (dmpe = Me<sub>2</sub> PCH<sub>2</sub> CH<sub>2</sub> PMe<sub>2</sub>) with sodium or potassium in the presence of benzene or naphthalene produces the compounds RuH(R)(dmpe)<sub>2</sub> -(R = C<sub>6</sub> H<sub>5</sub>, C<sub>10</sub>H<sub>7</sub>) [5]. The corresponding iron complex FeH(C<sub>10</sub>H<sub>7</sub>)(dmpe)<sub>2</sub> [6] readily eliminates naphthalene to form the 16-electron species Fe(dmpe)<sub>2</sub>, which is an excellent substrate for the activation of carbon—hydrogen bonds [7].

Expecting that  $\operatorname{Ru}(\operatorname{PMe}_3)_4$  would oxidatively add to benzene, we tried to generate *cis*- $\operatorname{Ru}H(C_6H_5)(\operatorname{PMe}_3)_4$  by reduction of *trans*- $\operatorname{Ru}Cl_2(\operatorname{PMe}_3)_4$  [8] with sodium amalgam in benzene. However, the ruthenium(II) complex is rather inert, and was consumed only after prolonged stirring for 7 days at 70°C. The elemental analysis and mass spectrum of the resulting orange, air-sensitive solid showed that its composition does not correspond to  $\operatorname{Ru}H(C_6H_5)(\operatorname{PMe}_3)_4$  but to  $\operatorname{Ru}(\operatorname{PMe}_3)_4$ . The <sup>1</sup>H and <sup>31</sup>P NMR data confirmed that the product is the ruthenium hydride complex  $\operatorname{Ru}H(\eta^2-\operatorname{CH}_2\operatorname{PMe}_2)(\operatorname{PMe}_3)_3$ (IV), analogous to the well-known iron compound  $\operatorname{FeH}(\eta^2-\operatorname{CH}_2\operatorname{PMe}_2)(\operatorname{PMe}_3)_3$  (V) [9].



The coordinatively unsaturated species  $\operatorname{Ru}(\operatorname{PMe}_3)_4$  which is presumably an intermediate in the reduction of *trans*- $\operatorname{RuCl}_2(\operatorname{PMe}_3)_4$ , evidently does not react with benzene by oxidative addition but is stabilised by an insertion of the metal into one of the H-CH<sub>2</sub> PMe<sub>2</sub> bonds of the phosphine ligands.

Although they have wholly analogous structures complexes IV and V differ remarkably in their dynamic behaviour and also in their reactivity towards nucleophiles. Whereas complex V is fluxional at room temperature [9], the ruthenium analogue IV is configurationally stable on the NMR time scale. The equilibrium between the two isomers,  $M(PMe_3)_4$  and  $MH(CH_2 PMe_2)$ .

<sup>\*</sup>Abbreviations used: vt, virtual triplet; vqui, virtual quintet; dqu, doublet of quartets; dqui, doublets of quintets

TABLE 1

<sup>1</sup> H NMR AND <sup>31</sup> P NMR SPECTRA OF IV, VI AND VIII, IN C<sub>6</sub>D<sub>6</sub> (§ IN PPM, TMS INT. (<sup>1</sup> H) AND 86% H<sub>3</sub>PO<sub>4</sub> EXT. (<sup>31</sup> P); J IN Hz) ASSIGNMENT ACCORD-ING TO STRUCTURES:



(X = H, I)

| Com-<br>plex                              | <sup>1</sup> PMe <sub>3</sub> CH <sub>2</sub>                                                                                                           | <sup>2</sup> PMe <sub>3</sub>              | <sup>1</sup> PMe <sub>3</sub>                            | <sup>4</sup> PMe <sub>3</sub>                  | <sup>1</sup> PMe <sub>2</sub> CH <sub>2</sub>                                                                                                 | <sup>2</sup> PMe <sup>3</sup>                                                                      | <sup>3</sup> <i>P</i> Me <sub>3</sub>                                                                                                         | <sup>4</sup> PMe <sub>3</sub>                                                                                                               |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| ıV a                                      | Me: 1.55dd<br><sup>2</sup> .7(PH) = 7.0, <sup>4</sup> .7(PH) = 2.6<br>Me: 1.26d<br><sup>2</sup> .7(PH) = 5.0<br>CH <sub>2</sub> :0.06,0.69 <sup>c</sup> | 1.34 m <sup>b</sup>                        | 1.38 m <sup>b</sup>                                      | 1.12d<br>² <i>J</i> (PH) = 5.2                 | 30,72ddd<br>J( <sup>1</sup> P <sup>2</sup> P) = 25,3<br>J( <sup>1</sup> P <sup>3</sup> P) = 36,5<br>J( <sup>1</sup> P <sup>4</sup> P) = 191,3 | $-9.23qu \\ J(^{1}P^{2}P) = J(^{2}P^{3}P) \\ = J(^{2}P^{4}P) = 25.3$                               | 2.17 $ddd$<br>J( <sup>1</sup> P <sup>3</sup> P) = 36,5<br>J( <sup>2</sup> P <sup>3</sup> P) = 25,3<br>J( <sup>3</sup> P <sup>4</sup> P) = 5,3 | 6,26ddd<br>J( <sup>1</sup> P <sup>4</sup> P) = 191.3<br>J( <sup>2</sup> P <sup>4</sup> P) = 26.3<br>J( <sup>3</sup> P <sup>4</sup> P) = 5.3 |
| IA                                        | Me: 2.12dd<br><sup>2</sup> J(PH) = 9.5, <sup>4</sup> J(PH) = 2,2<br>Me: 1.14dd<br><sup>2</sup> J(PH) = 9.5, <sup>4</sup> J(PH) = 2,4<br>CH · d          | 1,60 m <sup>b</sup>                        | 1,64 m <sup>b</sup>                                      | 1.06d<br>²J(PH) = 7.5                          | 48.51ddd<br>J( <sup>1</sup> P <sup>3</sup> P) = 37.2<br>J( <sup>1</sup> P <sup>3</sup> P) = 34.2<br>J( <sup>1</sup> P <sup>4</sup> P) = 232.7 | -14.50dd<br>$J(^{1}P^{2}P) = 37,2$<br>$J(^{2}P^{3}P) = 34,2$<br>$J(^{2}P^{4}P) < 3$                | $-9.31 qu J({}^{1}P^{3}P) = J({}^{2}P^{3}P) = J({}^{3}P^{4}P) = 34.2$                                                                         | $19.91dd \\ J(^{1}P^{4}P) = 232.7 \\ J(^{2}P^{4}P) < 3 \\ J(^{3}P^{4}P) = 34.2 $                                                            |
| e IIIA                                    | Me <sup>1</sup> 1.48dd<br><sup>2</sup> J(PH) = 11.6, <sup>4</sup> J(PH) = 0.9<br>CH <sub>2</sub> : <sup>d</sup>                                         | 1.22 vt<br>J'= 7.1                         | (= <sup>2</sup> PMc <sub>3</sub> )                       | 1.67d<br>² <i>J</i> (PH) = 9.6                 | 27.08dt<br>J( <sup>1</sup> P <sup>4</sup> P) = 5.9<br>J( <sup>1</sup> P <sup>2,3</sup> P) = 13.4                                              | 8.15dd<br>J( <sup>3,3</sup> P <sup>4</sup> P) = 26.8<br>J( <sup>1</sup> P <sup>2,3</sup> P) = 13.4 | (= <sup>2</sup> PMe <sub>3</sub> )                                                                                                            | —0.88dt<br>J( <sup>3,3</sup> P <sup>4</sup> P) = 26.8<br>J( <sup>1</sup> P <sup>4</sup> P) = 5.9                                            |
| <sup>a</sup> Signa<br><sup>31</sup> P-dec | l for RuH at 6 = —10.20 dqu, J(<br>:oupled spectra show singlets, <sup>C</sup>                                                                          | ( <sup>1,2,3</sup> PH) = 2(<br>Multiplets; | 6, J( <sup>4</sup> PH) = 82<br>the <sup>31</sup> P-decou | e Hz. <sup>b</sup> Assignme<br>pled spectrum s | ent of the two signa<br>hows two doublets                                                                                                     | ls to the two PMe <sub>3</sub> gro<br>of doublets with J(HH                                        | The second second second $d_{3.5} H_{2.6} \frac{d}{d}$                                                                                        | 1 3 not possible; the<br>Signal not observed.                                                                                               |

50 MTRI O <sup>e</sup> Signal for CH of the tripod ligand CH<sub>2</sub>Me<sub>2</sub>P CHS<sub>2</sub> at  $\delta = 5.10$  dt, <sup>3</sup> J(PH) = 15.0, <sup>4</sup> J(PH) = 4.0 Hz.  $(PMe_3)_3$ , which is well established for M = Fe [10], is largely shifted to the hydride side for M = Ru. Accordingly, complex IV does not react under normal conditions with CO or  $P(OMe)_3$ , whereas in the presence of the same ligands compound V readily forms the pentacoordinated iron(0) complexes  $Fe(PMe_3)_{5-n}L_n$  (L = CO,  $P(OMe)_3$ ; n = 2 and 3) [10].

In contrast to its inertness towards nucleophiles, the ruthenium compound IV readily reacts with electrophilic substrates such as methyl iodide, carbon disulfide and protonic acids. Thus treatment of IV with MeI in benzene gives the neutral iodoruthenium(II) complex  $\text{RuI}(\eta^2 - \text{CH}_2 \text{PMe}_2)(\text{PMe}_3)_3$  (VI) as the main product (Scheme 1). Small amounts of *cis*-RuI<sub>2</sub> (PMe<sub>3</sub>)<sub>4</sub> (VII) are also obtained (<sup>1</sup>H NMR (CH<sub>2</sub> Cl<sub>2</sub>):  $\delta = 1.88 \text{ vt. } J' = 6.0$  (two axial PMe<sub>3</sub> groups); 1.70 vt, J' = 7.8 Hz (two equatorial PMe<sub>3</sub> groups)). Complex VI is probably formed by nucleophilic attack of the ruthenium hydride on the carbon atom of the methyl iodide. The complex *cis*-RuI<sub>2</sub> (PMe<sub>3</sub>)<sub>4</sub> is possibly formed via RuMe(I)(PMe<sub>3</sub>)<sub>4</sub> which would be expected as the primary product from the reaction of the isomer Ru(PMe<sub>3</sub>)<sub>4</sub> and MeI, and which could react with methyl iodide to yield VII and ethane. Similar behaviour is known for FeMe(I)(PMe<sub>3</sub>)<sub>4</sub>, which gives FeI<sub>2</sub> (PMe<sub>3</sub>)<sub>2</sub> by further reaction with MeI [11].



+ cis-RuI<sub>2</sub>(PMe<sub>3</sub>)<sub>4</sub>

(豇口)

The reaction of IV with CS<sub>2</sub> in benzene leads (in 71% isolated yield) to a compound of empirical formula "Ru(PMe<sub>3</sub>)<sub>4</sub> CS<sub>2</sub>". Although iron complexes of general composition FeL<sub>2</sub> L'<sub>2</sub> ( $\eta^2$ -CS<sub>2</sub>) are known [12], the NMR spectra of the product from IV and CS<sub>2</sub> clearly confirm the structure proposed in Scheme 1. The formation of the tripod ligand CH<sub>2</sub>PMe<sub>2</sub>CHS<sub>2</sub> in complex VIII presumably occurs by initial insertion of CS<sub>2</sub> into the Ru—P bond of the Ru( $\eta^2$ -CH<sub>2</sub> PMe<sub>2</sub>) unit and subsequent migration of the hydride ligand to the S<sub>2</sub> C carbon atom.

Complex IV is inert towards PMe<sub>3</sub> in benzene, but in methanolic NH<sub>4</sub> PF<sub>6</sub> the salt [RuH(PMe<sub>3</sub>)<sub>5</sub>]PF<sub>6</sub> (IX) is formed. In this case, the ruthenium complex behaves like the iron analogue V, which after treatment with PMe<sub>3</sub>/NH<sub>4</sub> PF<sub>6</sub> in THF yields [FeH(PMe<sub>3</sub>)<sub>5</sub>]PF<sub>6</sub> [13]. The formation of the cation [RuH(PMe<sub>3</sub>)<sub>5</sub>]<sup>+</sup> was observed previously during the replacement of cycloocta-1,5-diene in [RuH(C<sub>8</sub> H<sub>12</sub>)(PMe<sub>3</sub>)<sub>3</sub>]<sup>+</sup> by PMe<sub>3</sub> but attempts to isolate the PF<sub>6</sub> salt led only to mixtures of IX and [RuH(C<sub>8</sub> H<sub>12</sub>)(PMe<sub>3</sub>)<sub>3</sub>]PF<sub>6</sub> [14]. The <sup>1</sup>H NMR spectrum of IX shows in CD<sub>3</sub> NO<sub>2</sub> three signals at  $\delta = 1.57$  vqui, J' = 4.8 Hz (four equatorial PMe<sub>3</sub> groups); 1.39 d, J(PH) = 6.0 Hz (one axial PMe<sub>3</sub> group) and -11.31 dqui,  $J(P_{cis}H) = 25$ ,  $J(P_{trans}H) = 74$  Hz (Ru-H).

There is clear evidence that in compounds of stoichiometric composition  $M(PMe_3)_4$  ruthenium stabilises even more strongly than iron the hydride isomer  $MH(\eta^2 - CH_2 PMe_2)(PMe_3)_3$ . For M = Ru, in contrast to M = Fe, this isomer determines the reactivity of the complex. Whereas nucleophilic attack is largely inhibited (probably due to the octahedral coordination and the 18-electron configuration of the metal atom), reactions with electrophiles readily occur to yield six-coordinate products. There is no indication that the coordinatively unsaturated isomer  $Ru(PMe_3)_4$ , which may be present in very small concentrations in solutions of IV, behaves like  $Ru(dmpe)_2$  in activating  $sp^2$ -carbon—hydrogen bonds.

Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank BASF AG, Ludwigshafen and DEGUSSA, Hanau for generous gifts of chemicals and Dr. W. Buchner and Mr. C.P. Kneis for NMR measurements.

## References

- 1 H. Werner and B. Klingert, J. Organometal. Chem., in press.
- 2 H. Werner and R. Werner, J. Organometal. Chem., 194 (1980) C7.
- 3 R. Werner and H. Werner, Angew. Chem., in press.
- 4 H. Werner and R. Werner, J. Organometal. Chem., 174 (1979) C63.
- 5 J. Chatt and J.M. Davidson, J. Chem. Soc., (1965) 843.
- 6 S.D. Ittel, C.A. Tolman, A.D. English and J.P. Jesson, J. Amer. Chem. Soc., 98 (1976) 6073.
- 7 C.A. Tolman, S.D. Ittel, A.D. English and J.P. Jesson, J. Amer. Chem. Soc., 101 (1979) 1742.
- 8 R.A. Jones, F.M. Real, G. Wilkinson, A.M.R. Galas, M.B. Hursthouse and K.M.A. Malik, J. Chem. Soc. Dalton, (1980) 511.
- 9 H.H. Karsch, H.F. Klein and H. Schmidbaur, Angew. Chem., 87 (1975) 630; Angew. Chem. Int. Ed. Engl., 14 (1975) 637; J.W. Rathke and E.L. Muetterties, J. Amer. Chem. Soc., 97 (1975) 3272.
- 10 H.H. Karsch, H.F. Klein and H. Schmidbaur, Chem. Ber., 110 (1977) 2200.
- 11 H.H. Karsch, Chem. Ber., 110 (1977) 2699.
- 12 H. Le Bozec, F.H. Dixneuf, A.J. Carty and N.J. Taylor, Inorg. Chem., 17 (1978) 2568; P. Conway, S.M. Grant and A.R. Manning, J. Chem. Soc. Dalton, (1979) 1920.
- 13 H.H. Karsch, Chem. Ber., 110 (1977) 2222.
- 14 T.V. Ashworth, E. Singleton, M. Laing and L. Pope, J. Chem. Soc. Dalton, (1978) 1032.